欢迎来到360期刊网!
学术期刊
  • 学术期刊
  • 文献
  • 百科
电话
您当前的位置:

首页 > 文献资料 > 正文

时间序列模型在月平均住院日预测中的应用及评价

游晓平;邹志武

摘要: 目的:对某综合医院的月平均住院日建立时间序列模型,利用指数平滑法和ARIMA模型对其进行模拟评价及短期预测.方法:在某综合医院统计报表中提取2014年1月—2017年12月的月平均住院日,其中2014年1月—2017年6月的数据用于创建时间序列,利用SPSS20.0进行统计分析,分别采用指数平滑法和ARIMA对创建的时间序列拟合模型,评价模型效果,并对2017年7月—2017年12月的平均住院日进行预测,比较实际值与预测值间的符合程度.结果:指数平滑法模型:平稳的R方为0.814,表明拟合程度较好.白噪声序列的Ljung-Box检验无统计学意义(Q18=18.730,P=0.226).模型参数估计中平滑参数Alpha的估计值为0.200,且参数检验结果有统计学意义(T=2.106,P=0.042).ARIMA模型:平稳的R方为0.361,Ljung-Box检验无统计学意义(Q18=15.215,P=0.580).AR的参数检验有统计学意义(T=-4.652,P<0.001),为-0.654.两模型实际值与预测值间的相对误差绝对值均小于5%.结论:指数平滑模型比ARIMA拟合及预测效果更好,是某综合医院月平均住院日的首选预测模型,为医院管理决策提供科学依据.

同期刊相关文献推荐

中国数字医学

统计源期刊 审稿时间:1-3个月 早咨询早发表