首页 > 文献资料
-
基于在线字典学习的医学图像特征提取与融合
提出一种基于在线字典学习(ODL)的医学图像特征提取与融合的新算法.首先,采用大小为8像素×8像素的滑动窗处理源图像,得到联合矩阵;通过ODL算法得到该联合矩阵的冗余字典,并利用小角回归算法(LARS)计算该联合矩阵的稀疏编码;将稀疏编码列向量的1范数作为稀疏编码的活动级测量准则,然后根据活动级大准则融合稀疏编码;后根据融合后的稀疏编码和冗余字典重构融合图像.实验图像为20位患者的已配准脑部CT和MR图像,采用5种性能指标评价融合图像的质量,同两种流行的融合算法比较.结果显示,所提出算法的各项客观指标均值优,Piella指数、QAB/F指数、MIAB/F指数、BSSIM指数和空间频率的均值分别为0.800 4、0.552 4、3.630 2、0.726 9和31.941 3,融合图像对比度、清晰度高,病灶的边缘清晰,运行速度较快,可以辅助医生诊断和临床治疗.
-
基于在线字典学习和脉冲耦合神经网络的脑图像融合
医学图像融合是医学影像和放射医学等领域的研究热点之一,广受医学界和工程界重视.提出一种基于在线字典学习(ODL)和脉冲耦合神经网络(PCNN)的脑部CT和MR图像融合新算法.首先,利用滑动窗技术将源图像分块,使用ODL算法和小角回归算法(LARS)得到各图像块对应列向量的稀疏编码;其次,将稀疏编码作为脉冲耦合神经网络的外部输入刺激信号进行迭代处理,根据点火次数确定融合系数;后,根据融合系数和学习字典重构融合图像.基于哈佛医学院的10组脑部CT和MR数据,将所提出算法同基于KSVD的融合算法、基于ODL的融合算法、基于NSCT的融合算法比较.实验结果显示:综合考虑主观视觉效果和客观评价指标,该算法性能整体优于其他算法,客观参数指标BSSIM、MI、Piella、SF、STD、QAB/F的均值分别为0.751 2、3.769 6、0.697 1、29.526 7、90.090 6、0.570 7,可以提供丰富的信息来辅助医生分析病变体,提高临床医疗诊断的准确性和治疗规划的科学性.