欢迎来到360期刊网!
学术期刊
  • 学术期刊
  • 文献
  • 百科
电话
您当前的位置:

首页 > 文献资料

  • 作者:

    The acoustic startle response has been used to evaluate tinnitus and hyperacusis in animal models. Gap induced prepulse in-hibition of the acoustic startle reflex (gap-PPI) is affected by tinnitus and loudness changes. Since tinnitus and reduced sound tolerance are commonly seen in elderly, we measured gap-PPI in Fischer 344 rats, an aging related hearing loss model, at dif-ferent ages: 3-5 months, 9-12 months, and 15-17 months. The startle response was induced by three different intensity of sound:105, 95 and 85 dB SPL. Gap-PPI was induced by different duration of silent gaps from 1 to 100 ms. When the startle was induced by 105 dB SPL sound intensity, the gap-PPI induced by 50 ms silent gap was significantly lower than those in-duced by 25 or 100 ms duration, showing a“notch”in the gap-PPI function. The“notch”disappeared with the reduction of startle sound, suggesting the“notch”may be related with hyper-sensitivity to loud sound. As the intensity of the stimulus de-creased, the appearance of the hyperacusis-like effect decreased more quickly for the youngest group of rats. We also tested scopolamine, a muscarinic acetylcholine receptor antagonist, and mecamylamine, a nicotinic acetylcholine receptor antago-nist, on the effect of gap-PPI. When scopolamine was administered, the results indicated no addition effect on the hyperacu-sis-like phenomenon in the two older groups. Mecamylamine, the nicotinic antagonist also showed effects on the appearance of hyperacusis on rats in different ages. The information derived from the study will be fundamental for the further research in determining the cause and treatment for hyperacusis.

  • 作者:

    Fragile X syndrome is the most common form of inherited mental retardation affecting up to 1 in 4000 individuals. The syn-drome is induced by a mutation in the FMR1 gene, causing a deficiency in its gene by-product FMRP. Impairment in the nor-mal functioning of FMRP leads to learning and memory deficits and heightened sensitivity to sensory stimuli, including sound (hyperacusis). The molecular basis of fragile X syndrome is thoroughly understood;however, the neural mechanisms underly-ing hyperacusis have not yet been determined. As the inferior colliculus (IC) is the principal midbrain nucleus of the auditory pathway, the current study addresses the questions underlying the neural mechanism of hyperacusis within the IC of fragile X mice. Acute experiments were performed in which electrophysiological recordings of the IC in FMR1-KO and WT mice were measured. Results showed that Q-values for WT were significantly larger than that of FMR-1 KO mice, indicating that WT mice exhibit sharper tuning curves than FMR1-KO mice. We also found the ratio of the monotonic neurons in the KO mice was much higher than the WT mice. These results suggest that lack of FMRP in the auditory system affects the developmental maturation and function of structures within the auditory pathway, and in this case specifically the IC. The dysfunction ob-served within the auditory neural pathway and in particular the IC may be related to the increased susceptibility to sound as seen in individuals with fragile X syndrome. Our study may help on understanding the mechanisms of the fragile X syndrome and hyperacusis.

  • 作者:

    Growing evidence has been found to suggest that early development of the central auditory system is dependent on acoustic stimuli. Peripheral damage caused by noise exposure and ototoxic drugs can induce functional and anatomical changes along the auditory pathways. The inferior colliculus (IC) is a unique structure in the auditory system located between the primary auditory nuclei of the brainstem and the thala-mus. Damage to the IC inhibitory circuitry may affect central auditory processing and sound perception. Here, we review some of the striking electrophysiological changes in the IC that occur after noise exposure and ototoxic drug treatment. A common occurrence that emerges in the IC after peripheral damage is hyper-excitability of sound-evoked response. The hyperexcitability of the IC is likely related with reduced inhibi-tory response that requires normal peripheral inputs. Early age hearing loss can result in a long lasting in-creased susceptibility to audiogenic seizure which is related to hyperactivity in the IC evoked by loud sounds. Our studies suggest that hearing loss can cause increased IC neuron responsiveness which may be related to tinnitus, hyperacusis, and audiogenic seizure.

  • 作者:

    There is growing evidence suggests that noise-induced cochlear damage may lead to hyperexcitability in the central auditory system (CAS) which may give rise to tinnitus. However, the correlation between the onset of the neurophysiological changes in the CAS and the onset of tinnitus has not been well studied. To investigate this relationship, chronic electrodes were implanted into the auditory cortex (AC) and sound evoked activities were measured from awake rats before and after noise exposure. The auditory brainstem response (ABR) was used to assess the degree of noise-induced hearing loss. Tinnitus was evaluated by measuring gap-induced prepulse inhibition (gap-PPI). Rats were exposed monaurally to a high-intensity narrowband noise centered at 12 kHz at a level of 120 dB SPL for 1 h. After the noise exposure, all the rats developed either permanent (>2 weeks) or temporary (<3 days) hearing loss in the exposed ear(s). The AC amplitudes increased significantly 4 h after the noise exposure. Most of the exposed rats also showed decreased gap-PPI. The post-exposure AC enhancement showed a positive correlation with the amount of hearing loss. The onset of tinnitus-like behavior was happened after the onset of AC enhancement.

360期刊网

专注医学期刊服务15年

  • 您好:请问您咨询什么等级的期刊?专注医学类期刊发表15年口碑企业,为您提供以下服务:

  • 1.医学核心期刊发表-全流程服务
    2.医学SCI期刊-全流程服务
    3.论文投稿服务-快速报价
    4.期刊推荐直至录用,不成功不收费

  • 客服正在输入...

x
立即咨询