欢迎来到360期刊网!
学术期刊
  • 学术期刊
  • 文献
  • 百科
电话
您当前的位置:

首页 > 文献资料

  • 作者:

    The neurofilament proteins (NFPs) from different neuronal tissues including Alzheimer and Huntington disease gray matter, rat brain gray, white matter and spinal cord were separated biochemically into two major fractions. A systematic investigation on the distribution, expression and phosphorylation of NFPs in those fractions was undertaken in the present study. It was found that only non-phosphorylated NF-H and NF-M, but not NF-L subunit were detected in Alzheimer brain gray matter high speed supernatant, whereas all neurofilament subunits including non-phosphorylated and phosphorylated were measured in high speed pellet fraction of the same tissue. The hyperphosphorylation of NF-H and NF-M in Alzheimer brain was shown by phosphorylation dependent monoclonal antibodies SMI31 and SMI34. This hyperphosphorylation was confirmed by non-phosphorylation dependent antibody SMI32 with dephosphosphorylation of the samples. Furthermore, an increased amount of NF-H, NH-M and NF-L, detected by SMI33 and NR4 respectively, was also observed in Alzheimer samples, in which the elevation in NF-L was significant. A significantly different immunoblot patterns in distribution, expression and phosphorylation were determined in various position of the neural system and alternative fractions. To our best knowledge, this is the first data shown definite abnormality of NFPs in Alzheimer disease. The information obtained in the present study will be extremely valuable in further study of the proteins both in physiological and pathological conditions.

  • 作者:

    Alzheimer disease (AD) neurofibrillary degeneration is characterized by a disruption of the cytoskeleton. The alteration of microtubule system and the microtubule-associated protein has been extensively investigated in this pathology. In the present study, we decided to explore the role of neurofilament (NF) proteins in AD neurofibrillary degeneration. We first investigated the content and the phosphorylation level of NF proteins in AD brain by using a panel of anti-NF antibodies. It was found by quantitative Western blot that the NF subunits were exclusively detected in an insoluble fraction from AD brain grey matter. The level of phosphorylated (p)-NF-H and (p)-NF-M was increased 1.5 and 1.3 times (P<0.05) respectively at phosphorylation specific antibody SMI31 epitope in AD as compared to neurological controls of Huntington disease (HD). A 1.6 fold elevation (P>0.05) of p-NF-H to another phosphate reactive antibody SMI34 was also seen in AD. The level of non-phosphorylated (np)-NF-H/M recognized by SMI33 was similar before alkaline phosphatase (ALP) treatment, but the total level of NF-H/M was 1.5 and 1.6 times (P<0.01) higher in AD than HD after dephosphorylation. Furthermore, a 1.8 fold increase of NF-M to SMI32 was observed in AD only after ALP treatment, suggesting that the NF-H/M are increased in the phosphorylated form. The amount of NF-L determined by NR-4 was 1.6 fold (P<0.01) higher in AD than HD. To our knowledge, this is the first biochemical data shown definite abnormality of NF subunits in AD brain. To understand the possible mechanism for the abnormal hyperphosphorylation and elevation of NF in AD brain, we treated human SY5Y neuroblastoma cell with protein phosphatase(PP)-2A and PP-1 inhibitor okadaic acid(OA). Then, we determined the relationship between an AD-like PP-A and PP-1 activity deficiency and NF phosphorylation as well as intracellular translocation in modeled cell system. It was demonstrated that p-NF-H/M detected by SMI31 and SMI34 were increased, and the elevated p-NF-H/M tended to be condensed in the proximal end of the cell processes after treated with 15 nmol/L OA. Further accumulation of p-NF-H/M to the cell plasma and parikarya was seen after increasing the concentration of OA to 30 nmol/L. On the other hand, the majority of np-NF-H/M bound to SMI32 and SMI33 were seen in the cell body although it was also detected in cell processes before OA treatment. The immunoreaction of np-NF-H/M was significantly decreased in the cell body and it became to be condensed in the proximal end of the cell processes after treatment of the cell by 15 nmol/L of OA. Further decreasing of the staining was observed when the concentration of OA was raised to 30 nmol/L. The data demonstrated that an Alzheimer-like inhibition of PP-2A and PP-1 induced hyperphosphorylation and accumulation of NF proteins as seen in AD brain, indicating that abnormality of NF might be involved in AD neurofibrillary degeneration. As SY5Y contains negligible amount of tau protein which was reported to cross-react with p-NF subunits, it might be served as a proper cell model for NF study.

360期刊网

专注医学期刊服务15年

  • 您好:请问您咨询什么等级的期刊?专注医学类期刊发表15年口碑企业,为您提供以下服务:

  • 1.医学核心期刊发表-全流程服务
    2.医学SCI期刊-全流程服务
    3.论文投稿服务-快速报价
    4.期刊推荐直至录用,不成功不收费

  • 客服正在输入...

x
立即咨询