欢迎来到360期刊网!
学术期刊
  • 学术期刊
  • 文献
  • 百科
电话
您当前的位置:

首页 > 文献资料

  • 作者:

    The role of type-2 astrocytes in the repair of central nervous system injury remains poorly un-derstood. In this study, using a relatively simple culture condition in vitro, type-2 astrocytes, differentiated from oligodendrocyte precursor cells by induction with bone morphogenetic pro-tein-4, were co-cultured with dorsal root ganglion neurons. We examined the effects of type-2 astrocytes differentiated from oligodendrocyte precursor cells on the survival and growth of dorsal root ganglion neurons. Results demonstrated that the number of dorsal root ganglion neurons was higher following co-culture of oligodendrocyte precursor cells and type-2 astrocytes than when cultured alone, but lower than that of neurons co-cultured with type-1 astrocytes. The length of the longest process and the length of all processes of a single neuron were shortest in neurons cultured alone, followed by neurons co-cultured with type-2 astrocytes, then neurons co-cultured with oligodendrocyte precursor cells, and longest in neurons co-cultured with type-1 astrocytes. These results indicate that co-culture with type-2 astrocytes can increase neuronal survival rate and process length. However, compared with type-1 astrocytes and oligodendrocyte precursor cells, the promotion effects of type-2 astrocytes on the growth of dorsal root ganglion neurons were weaker.

  • 作者:

    To date, it remains poorly understood whether astrocytes can be easily reprogrammed into neurons. Mash1 and Brn2 have been previously shown to cooperate to reprogram fibroblasts into neurons. In this study, we examined astrocytes from 2-month-old Sprague-Dawley rats, and found that Brn2 was expressed, but Mash1 was not detectable. Thus, we hypothesized that Mash1 alone could be used to reprogram astrocytes into neurons. We transfected a recombinant MSCV-MASH1 plasmid into astrocytes for 72 hours, and saw that all cells expressed Mash1. One week later, we observed the changes in morphology of astrocytes, which showed typical neuro-nal characteristics. Moreover,β-tubulin expression levels were signiifcantly higher in astrocytes expressing Mash1 than in control cells. These results indicate that Mash1 alone can reprogram astrocytes into neurons.

  • 作者:

    Astrocytes are intimately involved in the formation and development of retinal vessels. Astrocyte dysfunction is a major cause of blood-retinal barrier injury and other retinal vascular diseases. In this study, the development of the retinal vascular system and the formation of the blood-ret-inal barrier in mice were investigated using immunolfuorescence staining, gelatin-ink perfusion, and transmission electron microscopy. The results showed that the retinal vascular system of mice develops from the optic disc after birth, and radiates out gradually to cover the entire retina, taking the papilla optica as the center. First, the superifcial vasculature is formed on the inner retinal layer;then, the vasculature extends into the inner and outer edges of the retinal inner nuclear layer, forming the deep vasculature that is parallel to the superifcial vasculature. The blood-retinal barrier is mainly composed of endothelium, basal lamina and the end-feet of astrocytes, which become mature during mouse development. Initially, the naive endothelial cells were immature with few organelles and many microvilli. The basal lamina was uniform in thickness, and the glial end-feet surrounded the outer basal lamina incompletely. In the end, the blood-retinal barrier matures with smooth endothelia connected through tight junctions, rela-tively thin and even basal lamina, and relatively thin glial cell end-feet. These ifndings indicate that the development of the vasculature in the retina follows the rules of“center to periphery”and“superifcial layer to deep layers”. Its development and maturation are spatially and tempo-rally consistent with the functional performance of retinal neurons and photosensitivity. The blood-retinal barrier gradually becomes mature via the process of interactions between astro-cytes and blood vessel cells.

  • 作者:

    Neural stem cell transplantation is a useful treatment for ischemic stroke, but apoptosis often occurs in the hypoxic-ischemic environment of the brain after cell transplantation. In this study, we determined if mild hypothermia (27-28°C) can increase the survival rate of neural stem cells (1.0 × 105 /μL) transplanted into neonatal mice with hypoxic-ischemic encephalopathy. Long-term effects on neurological functioning of the mice were also examined. After mild hy-pothermia combined with neural stem cell transplantation, we observed decreased expression levels of inflammatory factor nuclear factor-kappa B and apoptotic factor caspase-3, reduced cerebral infarct volumes, increased survival rate of transplanted cells, and marked improvements in neurological function. Thus, the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation are superior to those of monotherapy. Moreover, our ifndings suggest that the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation on hypoxic-ischemic encephalopathy are achieved by anti-inlfammatory and an-ti-apoptotic mechanisms.

  • 作者:

    Previous studies have demonstrated that nerve cells differentiated from adipose-derived stro-mal cells after chemical induction have reduced viability;however, the underlying mechanisms remained unclear. In this study, we induced the differentiation of adult adipose-derived stromal cells into astrocytes using chemical induction. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide assay and flow cytometry showed that, with increasing induction time, the apoptotic rate gradually increased, and the number of living cells gradually decreased. Im-munohistochemical staining demonstrated that the number of glial fibrillary acidic protein-, caspase-3- and caspase-9-positive cells gradually increased with increasing induction time. Transmission electron microscopy revealed typical signs of apoptosis after differentiation. Taken together, our results indicate that caspase-dependent apoptosis is an obstacle to the differentia-tion of adipose-derived stromal cells into astrocytes. Inhibiting apoptosis may be an important strategy for increasing the efifciency of induction.

  • 作者:

    The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial ifbrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identiifed using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromode-oxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial ifbrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our ifndings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  • 作者:

    Both neurons and glia throughout the central nervous system are organized into networks by gap junctions. Among glia, gap junctions facilitate metabolic homeostasis and intercellular communication. Among neurons, gap junctions form electrical synapses that function pri-marily for communication. However, in neurodegenerative states due to disease or injury gap junctions may be detrimental to survival. Electrical synapses may facilitate hyperactivity and bystander killing among neurons, while gap junction hemichannels in glia may facilitate in-lfammatory signaling and scar formation. Advances in understanding mechanisms of plasticity of electrical synapses and development of molecular therapeutics to target glial gap junctions and hemichannels offer new hope to pharmacologically limit neuronal degeneration and en-hance recovery.

  • 作者:

    Neural cell differentiation and maturation is a critical step during central nervous system devel-opment. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neural cell differentiation. Because of this, the Olig family also affects acute and chronic central nervous system diseases, including brain injury, multiple sclerosis, and even gliomas. Improved understanding about the functions of the Olig family in central nervous system development and disease will greatly aid novel breakthroughs in central nervous system diseases. This review investigates the role of the Olig family in central nervous system develop-ment and related diseases.

  • 作者:

    Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury;however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney’s free fal ing method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats’ spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was sig-nificantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibril ary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly im-proves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is me-diated by metabolic changes and nerve cellrestoration in the hippocampal CA3 region.

  • 作者:

    In the present study, we investigated the effects of hypothyroidism on the morphology of astrocytes and microglia in the hippocampus of Zucker diabetic fatty rats and Zucker lean control rats. To in-duce hypothyroidism, Zucker lean control and Zucker diabetic fatty rats at 7 weeks of age oral y received the vehicle or methimazole, an anti-thyroid drug, treatment for 5 weeks and were sacrificed at 12 weeks of age in al groups for blood chemistry and immunohistochemical staining. In the methimazole-treated Zucker lean control and Zucker diabetic fatty rats, the serum circulating tri odothyronine (T3) and thyroxine (T4) levels were significantly decreased compared to levels ob-served in the vehicle-treated Zucker lean control or Zucker diabetic fatty rats. This reduction was more prominent in the methimazole-treated Zucker diabetic fatty group. Glial fibril ary acidic protein immunoreactive astrocytes and ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia in the Zucker lean control and Zucker diabetic fatty group were diffusely detected in the hippocampal CA1 region and dentate gyrus. There were no significant differences in the glial fibril ary acidic protein and Iba-1 immunoreactivity in the CA1 region and dentate gyrus between Zucker lean control and Zucker diabetic fatty groups. However, in the methimazole-treated Zucker lean control and Zucker diabetic fatty groups, the processes of glial fibril ary acidic protein immunoreactive astrocytes and Iba-1 immunoreactive microglia, were significantly decreased in both the CA1 region and dentate gyrus compared to that in the vehicle-treated Zucker lean control and Zucker diabetic fatty groups. These results suggest that diabetes has no effect on the mor-phology of astrocytes and microglia and that hypothyroidism during the onset of diabetes promi-nently reduces the processes of astrocytes and microglia.

  • Dendrobium Alkaloids Attenuates Learning and Memory Impairment in APP/PS1 Mice

    作者:YUAN Liu;YANG Xiao-hui;HUANG Juan;LI Li-sheng;NIE Jing;WU Qin;SHI Jing-shan

    Objective:To observe the effect of the total alkaloids of Dendrobium nobile Lindl on the learning and memory impairment of APP/PS1 transgenic mice. Methods:Seven months male APP/PS1 transgenic mice(n=24)were randomly divided into two groups:APP/PS1+vehicle and APP/PS1+DNLA(the total alkaloids of Dendrobium nobile Lindl)groups. Age-matched male wild-type(WT) littermates(n=24)were randomly divided into two groups:WT+vehicle and WT+DNLA groups. The normal group and APP / PS1 group were garaged with normal volume of saline(NS)for 6 consecutive months. The mice in the normal administration group and APP/PS1-administered group were given the daily total alkaloid of Dendrobiumnobile 40 mg·kg-1. Morris water maze was used to detect learning and memory ability in mice. At the end of the behavioral test,the cortical area of senile plaques were detected in the mice by anesthesia,and the survival of the hippocampal neurons was detected by Nissl's staining.Transmission electron microscope was performed to observe neuron structure and synaptic structure in hippocampus. The levels of IL-1βwere measured by ELISA .The levels of Aβ1-40,Aβ1-42 and the expression of GFAP,IL-6,COX-2,p-NF-ΚB,p-p38,PSD95 and SYP in hippocampus were detected by Western blot. Results:Compared with WT+vehicle group,the mean escape latency was markedly increased and the time percentage in target quadrant showed notable decrease in APP/PS1+vehicle group. The number of neurons were significantly reduced in hippocampal CA1 region. The results of transmission electron microscope showed that the structure of neuron and synaptic structure were damaged and the number of synaptic density was decreased. The amyloid plaques,Aβ1-40,Aβ1-42 contents the protein expression of GFAP,IL-6,COX-2,p-NF-κB and p-p38 were increased, meanwhile,the protein expression of PSD95 and SYP were dramatically decreased in the hippocampus in APP/PS1+vehicle group. These effects in WT+DNLA group showed no notable differences compared to the WT+vehicle group. However,compared with APP/PS1+vehicle group,the mean escape latency was decreased and the time percentage in target quadrant was notably increased in APP/PS1+DNLA. Moreover,the number of neurons were significantly increased in hippocampal CA1 region. The structure of neuron and synaptic structure was improvement Furthermore,the amyloid plaques,Aβ1-40, Aβ1-42 contents,GFAP,IL-6,COX-2,p- NF-κB and p-p38 expression were decreased in the hippocampus,the protein expression of PSD95 and SYP were significantly increased in APP/PS1+DNLA group. Conclusions:Under the experimental conditions,DNLA attenuates the learning and memory loss of Alzheimer's disease mice and reduces the number of senile plaques and increases the number of surviving neurons. The mechanism may be related to level of Aβ,activation of astrocytes, activation of astrocytes,inhibition of NF-κB and p38 and improvement of synaptic dysfunction.

  • 作者:

    Objective: To investigate the effect of anthopleurin-Q (AP-Q) on the intracellular Ca2+ concentration ([Ca2+ ]i) in cultured cortical astrocytes of rats. Methods: The [Ca2+ ]i was monitored by calcium imaging with Ca2+ sensitive fluorescent probe fura-2. Results: A concentration of 300 nmol/L AP-Q increased the [Ca2+ ]i in astrocytes by (136.98%±35.63%) (n=28),when compared with the baseline level. Furthermore, the elevation of [Ca2+]i was prevented by extracellular calcium free solution or when the extracellular Na+ was replaced by NMDG+ , and was decreased by Ni+ ,a non-specific antagonist of Na+/Ca2+ exchanger. Conclusion: AP-Q induced the intracellular [Ca2+ ]i elevation in cultured rat cortical astrocytes via activating the reverse mode of Na+/Ca2+ exchanger. AP-Q may be a useful tool to develop experimental model of seizures.

  • 作者:马海涵;邵阳;伍亚民;李宏运;廖维宏;刘媛;杨恒文;曾琳;龙在云

    Objective: To investigate the apoptosis rules of the astrocytes and oligodendrocytes induced by Ca2+ reperfusion.   Methods: The apoptosis of purified cultured astrocytes and oligodendrocytes induced by Ca2+ reperfusion and the relationship between the development of the cell apoptosis and post-reperfusion time was observed.   Results: Both the astrocytes and oligodendrocytes were obviously in a time-dependent fashion, and the apoptosis ratios of the oligodendrocytes (39.73%±4.16%) were higher than the astrocytes (19.64%±4.67%) 24 hours after Ca2+ reperfusion. The TUNEL positive cells were 13.6±1.82 and 21.4±1.95 at every visual field of astrocytes and oligodendrocytes respectively 24 hours after Ca2+ reperfusion.  Conclusions: The astrocytes and oligodendrocytes are similar with the development rules on apoptosis and have different susceptiveness to the situation.

360期刊网

专注医学期刊服务15年

  • 您好:请问您咨询什么等级的期刊?专注医学类期刊发表15年口碑企业,为您提供以下服务:

  • 1.医学核心期刊发表-全流程服务
    2.医学SCI期刊-全流程服务
    3.论文投稿服务-快速报价
    4.期刊推荐直至录用,不成功不收费

  • 客服正在输入...

x
立即咨询