欢迎来到360期刊网!
学术期刊
  • 学术期刊
  • 文献
  • 百科
电话
您当前的位置:

首页 > 文献资料

  • 新生大鼠神经干细胞的培养方法

    作者:窦万臣;王任直;李桂林;张波;田士强;姚勇;王欣

    神经干细胞研究是目前神经科学研究的热点,如何快速经济地培养出神经干细胞是每个研究者必须面对的问题.

  • 作者:

    A novel double-layer collagen membrane with unequal pore sizes in each layer was designed and tested in this study. The inner, loose layer has about 100-μm-diameter pores, while the outer, compact layer has about 10-μm-diameter pores. In a rat model of incomplete spinal cord injury, a large number of neural stem cells were seeded into the loose layer, which was then adhered to the injured side, and the compact layer was placed against the lateral side. The results showed that the transplantation of neural stem cells in a double-layer collagen membrane with unequal pore sizes promoted the differentiation of neural stem cells, attenuated the pathological lesion, and signiifcantly improved the motor function of the rats with incomplete spinal cord injuries. These experimental ifndings suggest that the transplantation of neural stem cells in a double-lay-er collagen membrane with unequal pore sizes is an effective therapeutic strategy to repair an injured spinal cord.

  • 作者:

    Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the ifeld of nerve damage repair. In the present study, human placenta-derived mesenchymal stem cells were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the resto-ration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.

  • 作者:

    Because the inhibition of Nogo proteins can promote neurite growth and nerve cell differenti-ation, a cell-scaffold complex seeded with Nogo receptor (NgR)-silenced neural stem cells and Schwann cells may be able to improve the microenvironment for spinal cord injury repair. Previ-ous studies have found that mild hypothermia helps to attenuate secondary damage in the spinal cord and exerts a neuroprotective effect. Here, we constructed a cell-scaffold complex consisting of a poly(D,L-lactide-co-glycolic acid) (PLGA) scaffold seeded with NgR-silenced neural stem cells and Schwann cells, and determined the effects of mild hypothermia combined with the cell-scaffold complexes on the spinal cord hemi-transection injury in the T9 segment in rats. Compared with the PLGA group and the NgR-silencing cells+PLGA group, hindlimb motor function and nerve electrophysiological function were clearly improved, pathological changes in the injured spinal cord were attenuated, and the number of surviving cells and nerve ifbers were increased in the group treated with the NgR-silenced cell scaffold+mild hypothermia at 34°C for 6 hours. Furthermore, fewer pathological changes to the injured spinal cord and more surviv-ing cells and nerve ifbers were found after mild hypothermia therapy than in injuries not treated with mild hypothermia. These experimental results indicate that mild hypothermia combined with NgR gene-silenced cells in a PLGA scaffold may be an effective therapy for treating spinal cord injury.

  • 作者:

    Neural stem cell transplantation is a useful treatment for ischemic stroke, but apoptosis often occurs in the hypoxic-ischemic environment of the brain after cell transplantation. In this study, we determined if mild hypothermia (27-28°C) can increase the survival rate of neural stem cells (1.0 × 105 /μL) transplanted into neonatal mice with hypoxic-ischemic encephalopathy. Long-term effects on neurological functioning of the mice were also examined. After mild hy-pothermia combined with neural stem cell transplantation, we observed decreased expression levels of inflammatory factor nuclear factor-kappa B and apoptotic factor caspase-3, reduced cerebral infarct volumes, increased survival rate of transplanted cells, and marked improvements in neurological function. Thus, the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation are superior to those of monotherapy. Moreover, our ifndings suggest that the neuroprotective effects of mild hypothermia combined with neural stem cell transplantation on hypoxic-ischemic encephalopathy are achieved by anti-inlfammatory and an-ti-apoptotic mechanisms.

  • 作者:

    Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into ifve groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en-dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. hTe cerebral palsy model was established by ligating the letf common carotid artery followed by exposure to hypox-ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. Atfer transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas-cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for ifnding water and the ifnding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. hTese ifndings indicate that the transplantation of vascu-lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deifcits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.

  • 作者:

    Alterations in embryonic neural stem cells play crucial roles in the pathogenesis of amyotrophic lateral sclerosis. We hypothesized that embryonic neural stem cells from SOD1G93A individuals might be more susceptible to oxidative injury, resulting in a propensity for neurodegeneration at later stages. In this study, embryonic neural stem cells obtained from human superoxide dis-mutase 1 mutant (SOD1G93A) and wild-type (SOD1WT) mouse models were exposed to H2O2. We assayed cell viability with mitochondrial succinic dehydrogenase colorimetric reagent, and measured cell apoptosis by lfow cytometry. Moreover, we evaluated the expression of the adenos-ine monophosphate-activated protein kinase (AMPK)α-subunit, paired box 3 (Pax3) protein, and p53 in western blot analyses. Compared with SOD1WT cells, SOD1G93A embryonic neural stem cells were more likely to undergo H2O2-induced apoptosis. Phosphorylation of AMPKαin SOD1G93A cells was higher than that in SOD1WT cells. Pax3 expression was inversely correlated with the phosphorylation levels of AMPKα. p53 protein levels were also correlated with AMPKαphosphorylation levels. Compound C, an inhibitor of AMPKα, attenuated the effects of H2O2. These results suggest that embryonic neural stem cells from SOD1G93A mice are more susceptible to apoptosis in the presence of oxidative stress compared with those from wild-type controls, and the effects are mainly mediated by Pax3 and p53 in the AMPKα pathway.

  • 作者:

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs inbone marrow-derived mesen-chymal stem cells, neural stem cells and neurons. miR-124 expression was substantially reduced inbone marrow-derived mesenchymal stem cells compared with the other cell types. We con-structed a lentiviral vector overexpressing miR-124 and transfected it intobone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markersβ-III tu-bulin and microtubule-associated protein-2 were signiifcantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re-sults suggest that miR-124 plays an important role in the differentiation ofbone marrow-derived mesenchymal stem cells into neurons. Our ifndings should facilitate the development of novel strategies for enhancing the therapeutic efifcacy ofbone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.

  • 作者:

    Propofol and remifentanil alter intracellular Ca2+ concentration ([Ca2+]i) in neural stem/progen-itor cells by activating γ-aminobutyric acid type A receptors and by reducing testosterone levels. However, whether this process affects neural stem/progenitor cell proliferation and differenti-ation remains unknown. In the present study, we applied propofol and remifentanil, alone or in combination, at low, moderate or high concentrations (1, 2–2.5 and 4–5 times the clinically effective blood drug concentration), to neural stem/progenitor cells from the hippocampi of newborn rat pups. Low concentrations of propofol, remifentanil or both had no noticeable effect on cell proliferation or differentiation; however, moderate and high concentrations of propofol and/or remifentanil markedly suppressed neural stem/progenitor cell proliferation and differen-tiation, and induced a decrease in [Ca2+]i during the initial stage of neural stem/progenitor cell differentiation. We therefore propose that propofol and remifentanil interfere with the prolifer-ation and differentiation of neural stem/progenitor cells by altering [Ca2+]i. Our ifndings suggest that propofol and/or remifentanil should be used with caution in pediatric anesthesia.

  • 作者:

    Traumatic brain injury (TBI) is the leading cause of death and disability of persons under 45 years old in the United States, affecting over 1.5 million individuals each year. It had been th ought that recovery from such injuries is severely limited due to the inability of the adult bra in to replace damaged neurons. However, recent studies indicate that the mature mammalian central nervous system (CNS) has the potential to replenish damaged neurons by proliferation and neuronal differentiation of adult neural stem/progenitor cells residing in the neurogenic regions in the brain. Furthermore, increasing evidence indicates that these endogenous stem/progenitor cells may play regenerative and reparative roles in response to CNS injuries or diseases. In support of this notion, heightened levels of cell proliferation and neurogenesis have been ob-served in response to brain trauma or insults suggesting that the brain has the inherent potential to restore populations of damaged or destroyed neurons. This review will discuss the potential functions of adult neurogenesis and recent development of strategies aiming at harnessing this neurogenic capacity in order to repopulate and repair the injured brain.

  • 作者:

    关键词: neural stem cells
  • 作者:

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  • 作者:

    There are several major pathological changes in Alzheimer’s disease, including apoptosis of cho-linergic neurons, overactivity or overexpression ofβ-site amyloid precursor protein cleaving enzyme 1 (BACE1) and inflammation. In this study, we synthesized a 19-nt oligonucleotide targeting BACE1, the key enzyme in amyloid beta protein (Aβ) production, and introduced it into the pSilenCircle vector to construct a short hairpin (shRNA) expression plasmid against the BACE1 gene. We transfected this vector into C17.2 neural stem cells and primary neural stem cells, resulting in downregulation of the BACE1 gene, which in turn induced a considerable reduction in reducing Aβprotein production. We anticipate that this technique combining celltransplantation and gene ther-apy wil open up novel therapeutic avenues for Alzheimer’s disease, particularly because it can be used to simultaneously target several pathogenetic changes in the disease.

  • 作者:

    In this review, we outline the major neural plasticity mechanisms that have been identiifed in the adult central nervous system (CNS), and offer a perspective on how they regulate CNS function. In particular we examine how myelin plasticity can operate alongside neurogenesis and synaptic plasticity to inlfuence information processing and transfer in the mature CNS.

  • 作者:

    Over last 20 years, extracellular matrices have been shown to be useful in promoting tissue re-generation. Recently, they have been used and have had success in achieving neurogenesis. Recent developments in extracellular matrix design have allowed their successful in vivo incorporation to engender an environment favorable for neural regeneration in animal models. Promising treatments under investigation include manipulation of the intrinsic extracellular matrix and incorporation of engineered naometer-sized scaffolds through which inhibition of molecules serving as barriers to neuroregeneration and delivery of neurotrophic factors and/or cells for successful tissue regeneration can be achieved. Further understanding of the changes incurred within the extracellular matrix following central nervous system injury will undoubtedly help design a clinically efifcacious extracellular matrix scaffold that can mitigate or reverse neural de-generation in the clinical setting.

  • 作者:

    Inhibition of neurite growth, which is mediated by the Nogo-66 receptor (NgR), affects nerve regeneration following neural stem cell (NSC) transplantation. The present study utilized RNA interference to silence NgR gene expression in NSCs, which were subsequently transplanted into rats with traumatic brain injury. Following transplantation of NSCs transfected with small interfering RNA,typical neural cell-like morphology was detected in injured brain tissues, and was accompanied by absence of brain tissue cavity, increased growth-associated protein 43 mRNA and protein expression,and improved neurological function compared with NSC transplantation alone. Results demonstrated that NSC transplantation with silenced NgR gene promoted functional recovery following brain injury.

  • 作者:

    One of the wel -defined sexual y dimorphic structures in the brain is the sexual y dimorphic nucleus, a cluster of cells located in the preoptic area of the hypothalamus. The rodent sexual y dimorphic nucleus of the preoptic area can be delineated histological y using conventional Nissl staining or immunohistochemical y using calbindin D28K immunoreactivity. There is increasing use of the bindin D28K-delineated neural cluster to define the sexual y dimorphic nucleus of the preoptic area in rodents. Several mechanisms are proposed to underlie the processes that contribute to the sexual dimorphism (size difference) of the sexual y dimorphic nucleus of the preoptic area. Recent evidence indicates that stem cellactivity, including proliferation and migration presumably from the 3rd ventricle stem cellniche, may play a critical role in the postnatal development of the sexual y dimorphic nucleus of the preoptic area and its distinguishing sexual y dimorphic feature: a signifi-cantly larger volume in males. Sex hormones and estrogen-like compounds can affect the size of the sexual y dimorphic nucleus of the preoptic area. Despite considerable research, it remains un-clear whether estrogen-like compounds and/or sex hormones increase size of the sexual y dimor-phic nucleus of the preoptic area via an increase in stem cellactivity originating from the 3rd ventricle stem cellniche.

  • 作者:

    The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of newborn rats were induced to differentiate with neurotrophic growth factor, and the electrophysiological properties of the voltage-gated potassium ion channels were observed. Immunofluorescence staining showed that the rapidly proliferating neural stem cells formed spheres in vitro that expressed high levels of nestin. The differentiated neurons were shown to express neuron-specific enolase. Flow cytometric analysis revealed that the neural stem cells were actively dividing and the percentage of cells in the S + G2/M phase was high. However, the ratio of cells in the S + G2/M phase decreased obviously as differentiation proceeded. Whole-cellpatch-clamp re-cordings revealed apparent changes in potassium ion currents as the neurons differentiated. The potassium ion currents consisted of one transient outward potassium ion current and one delayed rectifier potassium ion current, which were blocked by 4-aminopyridine and tetraethylammonium, respectively. The experimental findings indicate that neural stem cells from newborn rat hippo-campus could be cultured and induced to differentiate into functional neurons under defined condi-tions in vitro. The differentiated neurons expressed two types of outward potassium ion currents similar to those of mature neurons in vivo.

  • 神经干细胞的生物学特性和体外培养鉴定

    作者:季丽莉;佟雷;王振宇

    神经干细胞(NSCs)是具有自我更新和多向分化能力的细胞,存在于胚胎、胎儿和成人的脑室下区、齿状回、纹状体、室管膜下区等部位.通过机械分离或酶消化法能从其存在部位分离出NSCs.当培养基中表皮生长因子(EGF)和成纤维生长因子(bFGF)浓度均为20 ng·mL-1时,NSCs能通过对称分裂和不对称分裂在体外增殖,当培养基中bFGF浓度为1~10ng·mL-1时,NSCs可向神经元和胶质细胞分化.目前,表达Nestin、自我增殖和多潜能分化能力是鉴定NSCs的三大条件,但还没有NSCs特异性的鉴定方法.

  • 神经干细胞移植及基因治疗:脊髓损伤修复的新策略

    作者:王春芳;崔爱玲;王雅芳;杨涛;赵俊萍

    中枢神经系统损伤的治疗已成为世界各国神经科学家关注的焦点.自证实成年哺乳动物中枢神经系统存在有神经干细胞以来,各国学者致力于干细胞的分离、在神经丝裂原诱导下的增殖、通过基因转移技术获得永生化神经干细胞系等研究,并尝试用于中枢神经系统疾病的治疗.本文就脊髓损伤的神经干细胞移植以及神经干细胞作为载体对脊髓损伤进行基因治疗的现状及应用前景进行综述.

33 条记录 1/2 页 « 12 »

360期刊网

专注医学期刊服务15年

  • 您好:请问您咨询什么等级的期刊?专注医学类期刊发表15年口碑企业,为您提供以下服务:

  • 1.医学核心期刊发表-全流程服务
    2.医学SCI期刊-全流程服务
    3.论文投稿服务-快速报价
    4.期刊推荐直至录用,不成功不收费

  • 客服正在输入...

x
立即咨询